Dr. Nikita S. Gibanov

Laboratory on Convective Heat and Mass Transfer, Tomsk State University 36 Lenin Avenue, Tomsk, 634050, Russia

Phone: +7-923-426-53-81

Email: gibanov@mail.tsu.ru fire9n@mail.ru

EDUCATION

2016–2020	Ph.D. student
	Specialization "Unsteady conjugate natural convective
	heat transfer in closed cavities with local heat source
	different shapes" at Tomsk State University, Russia
2016	Master's degree in Fluid Mechanics, Tomsk State University, Russia
2014	Bachelor's degree in Fluid Mechanics, Tomsk State University, Russia

APPOINTMENTS

2022–Present	Associate professor of the Department of Theoretical Mechanics, Tomsk
	State University
2022–Present	Researcher at the Laboratory on Convective Heat and Mass Transfer,
	Tomsk State University
2018–2022	Senior Lecturer of the Department of Theoretical Mechanics, Tomsk
	State University
2017-2022	Junior Researcher at the Laboratory on Convective Heat and Mass
	Transfer, Tomsk State University
2014–2016	Laboratory Assistant at the Laboratory on Convective Heat and Mass
	Transfer, Tomsk State University
2012–2014	Laboratory Assistant at the Study Laboratory of Computational
	Mathematics and Computer Modeling department, Tomsk State
	University

AREAS OF INTEREST

	systems
Conjugate heat and mass transfer	Computational fluid dynamics
Surface Thermal Radiation	Finite difference method
Natural convection	Lattice Boltzmann method Fluid flow and heat transfer in 3D channels Active and passive electronic cooling systems
Heat and mass transfer in closed cavities	
Different shapes of local heat (isothermal and	
volumetric heat generation) source	
Numerical analysis	
Heat transfer and flow pattern in electronic	

eveteme

Citations and Other Statistics (as of November 2021)

1) Social Science Citation Index (Web of Science): over 496 citations, h-index 12

3) Scopus: 524 citations, h-index 13

Selected Research Projects and Grants (Project Leader)

- 2022 2024 «Mathematical modeling of conjugate convective heat transfer in threedimensional channels with using multiprocessor calculations», grant of Russian Science Foundation, Tomsk, Russia.
- 2021 2023 «Development of effective active and passive cooling systems for electronic equipment using modern computing technologies», scholarship of the President of the Russian Federation, Tomsk, Russia.
- 2018 2020 «Intensification of heat transfer in closed cavities with heaters of various shapes, sizes and heat generation powers», scholarship of the President of the Russian Federation, Tomsk, Russia.

Selected Research Projects and Grants (Member of the Research Team)

- 2014 2016 « Modeling of heat and mass transfer processes and phase changing in heat pipes», government task of the Ministry of Education and Science of the Russian Federation, Tomsk, Russia.
- 2015 2016 «Mathematical modeling of unsteady regimes of conjugated convective-radiative heat transfer in technological objects taking into account external hydrodynamic and thermal effects», Grants Council, Tomsk, Russia.
- 2017 2019 «Methods for intensifying convective heat transfer in closed semi-open systems», government task of the Ministry of Education and Science of the Russian Federation, Tomsk, Russia.

- 2017 2018 «Mathematical modeling of convective heat transfer in media with variable physical properties», Grants Council, Tomsk, Russia.
- 2017 2018 «Mathematical modeling of convective heat transfer and entropy generation in closed and semi-open cavities in the presence of a magnetic field», grant of Russian Foundation for Basic Research, Tomsk, Russia.
- 2017 2019 «Simulation of active and passive cooling systems of heat-generating elements in electronics and power engineering», grant of Russian Science Foundation, Tomsk, Russia.
- 2019 2020 «Numerical investigations of conjugate heat and mass transfer in electronic equipment cooling systems based on materials with phase transitions», grant of Russian Foundation for Basic Research, Tomsk, Russia.
- 2019 2020 «Mathematical modeling of complex heat exchange in technological areas with heat generation elements», Grants Council, Tomsk, Russia.

Conference and Seminar Presentations

2022

- XIX International Conference of Students and Young Scientists «Prospects of Fundamental Sciences Development», Tomsk, Russia;
- 5th International Symposium on Convective Heat and Mass Transfer (CONV-22), Izmir, Turkey;
- All-Russian Conference with elements of a scientific school for young scientists "XXXVIII Siberian Thermophysical Seminar», Novosibirsk, Russia.
- 8th Russian National Conference on Heat and Mass Transfer (RNCHT-8), Moscow, Russia.

2021

- XVIII International Conference of Students and Young Scientists «Prospects of Fundamental Sciences Development», Tomsk, Russia;
- All-Russian youth scientific conference of students, graduate students and young scientists «All the facets of mathematics and mechanics», Tomsk, Russia;
- All-Russian Conference with elements of a scientific school for young scientists "XXXVII Siberian Thermophysical Seminar», Novosibirsk, Russia.

2020

• XVII International Conference of Students and Young Scientists «Prospects of Fundamental Sciences Development», Tomsk, Russia;

- All-Russian Conference with elements of a scientific school for young scientists "XXXVI Siberian Thermophysical Seminar», Novosibirsk, Russia.
- The 3rd International Conference on Frontiers in Industrial and Applied Mathematics-2020 (FIAM-2020), Jamshedpur, Jharkhand, India

2019

- 12th International Conference on Thermal Engineering (ICTEA-2018), Gandhinagar, India;
- All-Russian youth scientific conference of students, graduate students and young scientists «All the facets of mathematics and mechanics», Tomsk, Russia;
- XVI International Conference of Students and Young Scientists «Prospects of Fundamental Sciences Development», Tomsk, Russia;
- XXII School-seminar of young scientists and specialists under the guidance of Academician A.I. Leontiev «Problems gas dynamics and heat and mass transfer in energy installations», Moscow, Russia.
- All-Russian Conference with elements of a scientific school for young scientists "XXXV Siberian Thermophysical Seminar», Novosibirsk, Russia.
- VI All-Russian scientific conference «Perm hydrodynamics scientific readings», Perm, Russia.

2018

- 11th International Conference on Thermal Engineering (ICTEA-2018), Doha, Qatar;
- XIII International Conference of Students and Young Scientists "Prospects of Fundamental Sciences Development", Tomsk, Russia;
- All-Russian Conference with elements of a scientific school for young scientists "XXXIV Siberian Thermophysical Seminar», Novosibirsk, Russia;
- All-Russian conference on mathematics and mechanics, Tomsk, Russia;
- 7th Russian National Conference on Heat and Mass Transfer (RNCHT-7), Moscow, Russia.

2017

- XIV International Conference of Students and Young Scientists "Prospects of Fundamental Sciences Development", Tomsk, Russia;
- XXI School-seminar of young scientists and specialists under the guidance of Academician A.I. Leontiev "Problems of gas dynamics and heat and mass transfer in power installations ", St. Petersburg, Russia;
- XXXIII Siberian Thermophysical Seminar, Novosibirsk, Russia;

- VI International Scientific and Technical Conference of Young Scientists, Post-Graduates and Students "High Technologies in Modern Science and Technology", Tomsk, Russia;
- VI International Youth Scientific Conference «Actual Problems of Contemporary Continuum Mechanics and Celestial Mechanics 2017», Tomsk, Russia.

2016

- All-Russian youth scientific conference of students, graduate students and young scientists «All the facets of mathematics and mechanics», Tomsk, Russia;
- IX All-Russian Conference "Fundamental and Applied Problems of Modern Mechanics", Tomsk, Russia;
- XIV All-Russian school-conference with international participation "Actual problems of thermophysics and physical hydrodynamics", Novosibirsk, Russia.

2015

- All-Russian youth scientific conference of students, graduate students and young scientists «All the facets of mathematics and mechanics», Tomsk, Russia;
- XII International Conference of Students and Young Scientists "Prospects of Fundamental Sciences Development", Tomsk, Russia;
- XX School-seminar of young scientists and specialists under the guidance of Academician A.I. Leontiev "Problems gas dynamics and heat and mass transfer in energy installations", Zvenigorod, Russia;
- IX International Scientific and Practical Conference «Modern Problems of Mechanical Engineering», Tomsk, Russia.

2014

- All-Russian youth scientific conference of students, graduate students and young scientists «All the facets of mathematics and mechanics», Tomsk, Russia;
- XII International Scientific and Practical Conference of Students, Postgraduates and Young Scientists «Youth and Modern Information Technologies», Tomsk, Russia;
- International Youth Scientific Conference «Current issues of continuum mechanics and celestial mechanics», Tomsk, Russia.

Journal papers

1. Gibanov N.S., Sheremet M.A. Effect of the buoyancy force on natural convection in a cubical cavity with a heat source of triangular cross-section // *IOP Conf. Series: Materials Science and Engineering.* – 2016. – Vol. 124. – 012057, – pp. 1-4. DOI: 10.1088/1757-899X/124/1/012057

2. Gibanov N.S., Sheremet M.A., Pop I. Free convection in a trapezoidal cavity filled with a micropolar fluid // *International Journal of Heat and Mass Transfer*. – 2016. – Vol. 99. – pp. 831–838. DOI: 10.1016/j.ijheatmasstransfer.2016.04.056 (IF=3.891)

3. Gibanov N.S., Sheremet M.A., Pop I. Natural convection of micropolar fluid in a wavy differentially heated cavity // *Journal of Molecular Liquids*. – 2016. – Vol. 221. – pp. 518–525. DOI: 10.1016/j.molliq.2016.06.033 (IF=4.513)

4. Bondareva N.S., Gibanov N.S., Martyushev S.G., Miroshnichenko I.V., Sheremet M.A. Comparative analysis of finite difference method and finite volume method for unsteady natural convection and thermal radiation in a cubical cavity filled with a diathermic medium // *Computer Research and Modeling.* – 2017. – Vol. 9. – pp. 567-578. DOI: 10.20537/2076-7633-2017-9-4-567-578

5. Gibanov N.S., Sheremet M.A., Oztop H.F., Al-Salem K. Convective heat transfer in a liddriven cavity with a heat-conducting solid backward step under the effect of buoyancy force // *International Journal of Heat and Mass Transfer.* – 2017. – Vol. 112. – pp. 158-168. DOI: 10.1016/j.ijheatmasstransfer.2017.04.102 (IF=3.891)

6. Gibanov N.S., Sheremet M.A., Oztop H.F., Abu-Hamdeh N. Effect of uniform inclined magnetic field on mixed convection in a lid-driven cavity having a horizontal porous layer saturated with a ferrofluid // *International Journal of Heat and Mass Transfer.* – 2017. – Vol. 114. – pp. 1086-1097. DOI: 10.1016/j.ijheatmasstransfer.2017.07.001 (IF=3.891)

7. Gibanov N.S., Sheremet M.A. Unsteady natural convection in a cubical cavity with a triangular heat source // *International Journal of Numerical Methods for Heat and Fluid Flow*. – 2017. – Vol. 27. – pp. 1795-1813. DOI: 10.1108/HFF-06-2016-0234 (IF = 2.45)

8. Gibanov N.S., Sheremet M.A., Oztop H.F., Nusier O.K. Convective heat transfer of ferrofluid in a lid-driven cavity with a heat-conducting solid backward step under the effect of a variable magnetic field // *Numerical Heat Transfer; Part A: Applications.* – 2017. – Vol. 72. – pp. 54-67. DOI: 10.1080/10407782.2017.1353377 (IF = 2.409)

9. Gibanov N.S., Sheremet M.A., Oztop H.F., Al-Salem K. Effect of uniform inclined magnetic field on natural convection and entropy generation in an open cavity having a horizontal porous layer saturated with a ferrofluid // *Numerical Heat Transfer; Part A: Applications.* – 2017. – Vol. 72. – pp. 479-494. DOI: 10.1080/10407782.2017.1386515 (IF = 2.409)

10. Gibanov N.S., Sheremet M.A., Ismael M.A., Chamkha A.J. Mixed convection in a ventilated cavity filled with a triangular porous layer // *Transport in Porous Media*. – 2017. – Vol. 120. – pp. 1-21. DOI: 10.1007/s11242-017-0888-y (IF = 1.997)

11. Gibanov N.S., Sheremet M.A. The impact of position of the local volumetric heat generating source of a semi-cylindrical shape on heat exchange inside the cavity // Vestnik Udmurtskogo Universiteta: Matematika, Mekhanika, Komp'yuternye Nauki. – 2018. – Vol. 28. – pp. 119-130. DOI: 10.20537/vm180111

12. Gibanov N.S., Sheremet M.A., Oztop H.F., Al-Salem K. MHD natural convection and entropy generation in an open cavity having different horizontal porous blocks saturated with a ferrofluid // *Journal of Magnetism and Magnetic Materials*. – 2018. – Vol. 452. – pp. 193-204. DOI: 10.1016/j.jmmm.2017.12.075 (IF = 2.683)

13. Gibanov N.S., Sheremet M.A., Oztop H.F., Abu-Hamdeh, N. Mixed convection with entropy generation of nanofluid in a lid-driven cavity under the effects of a heat-conducting solid wall and vertical temperature gradient *// European Journal of Mechanics, B/Fluids.* – 2018. – Vol. 70. – pp. 148-159. DOI: 10.1016/j.euromechflu.2018.03.002 (IF = 1.811)

14. Gibanov N.S., Sheremet M.A. Natural convection in a cubical cavity with different heat source configurations // *Thermal Science and Engineering Progress*. – 2018. – Vol. 7. – pp. 138-145. DOI: 10.1016/j.tsep.2018.06.004

15. Gibanov N.S., Bondareva N.S., Sheremet M.A. Melting of nano-enhanced PCM inside finned radiator // *Journal of Physics: Conference Series.* – 2018. – Vol. 1105. – Issue 1, 012023 DOI: 10.1088/1742-6596/1105/1/012023

16. Gibanov N.S., Sheremet M.A. Effect of trapezoidal heater on natural convection heat transfer and fluid flow inside a cubical cavity // *International Journal of Numerical Methods for Heat and Fluid Flow.* – 2019. – Vol. 29. – pp. 1232-1248. DOI: 10.1108/HFF-07-2018-0407 (IF = 2.45)

17. Gibanov N.S., Miroshnichenko I.V., Sheremet M.A. Comparison of two numerical approaches for natural convection in cavities with energy sources. Journal of Physics: Conference Series. – 2019. – Vol. 1382. – Issue 1, 012123 DOI: 10.1088/1742-6596/1382/1/012131

18. Bondareva N.S., Gibanov N.S., Sheremet M.A.Computational study of heat transfer inside different PCMs enhanced by Al2O3 nanoparticles in a copper heat sink at high heat loads. Nanomaterials. – 2020. – Vol. 10. – Issue 2. – No284 DOI: 10.3390/nano10020284

19. Gibanov N.S., Miroshnichenko I.V., Sheremet M.A. Numerical analysis of heat source surface emissivity impact on heat transfer performance in a rectangular enclosure at high Rayleigh numbers. International Journal of Computational Methods in Engineering Science and Mechanics. _ 2020. Vol. 21. _ Issue 4. pp. 205-214 DOI: _ _ 10.1080/15502287.2020.1788191

20. Gibanov N.S., Sheremet M.A. Numerical investigation of conjugate natural convection in a cavity with a local heater by the lattice Boltzmann method // *Fluids*. – 2021. – Vol. 6. – Article number 316. DOI: 10.3390/ fluids6090316

21. Gibanov N.S., Miroshnichenko I.V., Sheremet M.A. Numerical Analysis of Heat Transfer through Hollow Brick Using Finite-Difference Method // *Axioms*. – 2022. – Vol. 11. Iss. 2. – Article number 37. DOI: 10.3390/axioms11020037

22. Gibanov N.S., Rashidi M.M., Sheremet M.A. Comparative analysis of the lattice Boltzmann method and the finite difference technique of thermal convection in closed domains with heaters // *International Journal of Numerical Methods for Heat and Fluid Flow.* – 2022. – Vol. 32. – pp. 3579-3597

23. Gibanov N.S., Sheremet M.A. Effect of shape and sizes of a local heat source on convective heat transfer in a square cavity // *Computer Research and Modeling*. – 2015. – Vol. 7, №2, pp. 271-280

24. Gibanov N.S., Sheremet M.A. Numerical investigation of conjugate free-convective heat

transfer in a closed cavity with a triangular heat generation source // Bulletin of Perm University. Series: Physics. – 2018. – Vol. 42, issue 4. – pp 52-59

Reviewer:

- International Journal of Heat and Mass Transfer
- International Communications in Heat and Mass Transfer
- International Journal of Numerical Methods for Heat & Fluid Flow
- European Journal of Mechanics B/Fluids
- Nature. Scientific Reports
- Energies
- Materials
- Mathematics
- Thermophysics and Aeromechanics
- Computer Methods in Biomechanics and Biomedical Engineering
- Jordan Journal of Mechanical and Industrial Engineering